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Exact expressions are derived for the centroid and variance as functions across the 
flow when there has been an initially uniform contaminant release in an oscillatory 
flow. Two examples are given to demonstrate that there can be a substantial region 
of the flow (where the velocity shear is relatively large) in which the contaminant 
distribution exhibits contraction after flow reversal. This effect, and the sensitivity 
of the variance to the precise time of discharge, is most marked when the flow 
oscillations are rapid relative to the timescale for cross-sectional mixing. 

1. Introduction 
For the particular case of an oscillatory unbounded linear shear flow, the author 

(Smith 19823) has shown that in each longitudinal slice of the contaminant cloud 
the variance was increasing. Yet, after flow reversal, the relative movement of the 
slices gave the impression of an overall contraction (Smith 19823, figures 3, 4). The 
question that motivated the present investigation was whether the contraction after 
flow reversal in bounded shear flows might likewise only be an artifact of the 
cross-sectional averaging process. 

The answer to the question turns out to be that there is a substantial region (where 
the velocity shear is relatively large) in which the variance does exhibit contraction 
after flow reversal. Moreover, if cross-sectional mixing takes place on a longer 
timescale than the flow oscillations, then the Contractions are quite prolonged and 
of large amplitude. 

2. Hermite-series representation 
For mathematical simplicity, we shall assume that the excursion distance within 

one flow oscillation is sufficiently small that  the flow can be regarded as being 
longitudinally uniform (i.e. independent of x). Thus the advection-diffusion equation 
for the contaminant concentration c ( x ,  y, z ,  t )  takes the form 

with 
(2 . la )  

(2.1 b )  

Here u ( y ,  z ,  t )  is the longitudinal velocity K ( Y ,  z ,  t )  the diffusivity, V the transverse 
gradient operator (0, dy,  dz ) ,  A the flow region, aA its boundary, and n the outward 
normal. 

Following Smith (1982~) we pose the Hermite-series representation for c : 

(2.2a) 
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with 

x- [ E ( t ’ ) d t . X  

0- 
f l =  (2.2 b )  

Here Mis the volume discharge per unit area ofthe flow region, Z ( t )  the cross-sectionally 
averaged velocity X ( y ,  z ,  t )  the centroid displacement relative to a point of reference 
moving with the bulk velocity, and ~ ( y , z , t )  the standard deviation. The Hermite 
polynomials Hem (6) are defined recursively 

He,,, = (He,,, - (m+ 1)  He,, with He, = 1. (2 .3)  

This Hermite-series approach is very closely related to Aris’ (1956) method of 
moments. However, instead of generating successive moments, the present approach 
yields successive approximations for the contaminant distribution. For example, if 
only a,, X and crz are evaluated, then a t  each level across the flow we have a Gaussian 
approximation for c.  

The coefficient of He, (<) in ( 2 . 1 ~ )  yields the transverse diffusion equation (Smith 
1982c, equation ( 2 . 7 ) ) :  

a,a(m) - v .  ( ~ V d m ) )  = ( u - - - a t x ) a ( m - l ) +  K V X .  Va(m-l) 

+ V .  ( ~ a ( ~ - ~ ) V X ) + ~ ( 2 ~ - a ~ 0 - ~ ) a ( ~ - ~ ) +  K V & ! . V ~ ( ~ - ~ )  

+ v . (Ka(m-2W0-2) 2K(VX)2U(m-2) 1 
+ KVX . V 0 - 2 ~ ( m - 3 )  + ~ K ( V C T ~ ) ~  a(m-4), ( 2 . 4 a )  

(2 .4b)  
with 

We shall make the simplifying assumption that the discharge is uniform. Thus, the 
solution for a(,) is 

and the starting conditions for (2 .4a ,  b )  take the form 

Kn . Va(m) = - a(m-l)l;n . V X  -fa(m-z)Kn . Vcr2 on dA. 

(2 .5)  

X = 0, v2 = constant a t  t = t o ,  (2 .6)  

a(,) = 1 ,  

where we have taken the discharge centroid to define the origin x = 0. 

3.  Centro id  displacement 
To make analytical progress with (2 .4a ,  b ) ,  we need the further simplifying 

assumption that ~ ( y ,  z ,  t )  remains spatially self-similar (i.e. all positions vary together). 
For example, in a shallow estuary K varies with the strength of the tidal current. Thus, 
for the similarity assumption to be valid i t  suffices that the current has negligible 
phase lag across the estuary. Following Smith (1982a) we then introduce the 
eigenfunctions $m ( y ,  z )  : 

v.((K)VZlrm)+hm$m = 0, ( 3 . 1 ~ )  

with 
( K ) n ,  V$,  = 0 on dA, (3.1 6) 

where the angle brackets (. . .) denote time averaging. Without loss of generality 
we assume that the eigenfunctions are normalized such that 

$,= 1 ,  $.”,= 1. (3 .2a ,  b )  
- 
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At m = 1 the absence of a(l)  permits us to write ( 2 . 4 ~ )  as an equation for the 
centroid displacement : 

with 
a,x-v.  ( K v x )  = u-a, (3.3a) 

K n . V X  = 0 on aA. (3.3b) 

To represent the forcing term we introduce the coefficients 

00 

um(t) = i.e. U(Y,  2, t )  = $ t )  + E um(t) $m(y, z ) .  (3.4) 
m-1 

This leads to  an eigenfunction expansion for X: 
00 t 

X =  m = l  x ~ , i N . x ) S t 0 ~ m ( t ~ ) e x p  ( - h m T ( t ' , t ) ) d t ' ,  (3.5) 
with 

T(t',t) = j-t&itf/ K(t") 

The integral T can be thought of as being an effective time coordinate for flows with 
time-dependent turbulent intensities. 

For the particular case in which K is independent of time, and the velocity field 

13.7) 
is sinusoidal 

um = a, Usin (wt + O m ) ,  

we can evaluate the integrals (3.5), (3.6) to obtain 

w 
-exp (-Am(t- to))  [sin (wto + 8,) - - cos (wt, + 8,) 

Am 

4. Variance 

an equation for the horizontal variance c r 2 :  
The coefficient a@) is absent in the representation ( 2 . 2 ~ ) .  Thus, a t  m = 2 ,  we have 

with 
( 4 . 1 ~ )  

(4.1 b )  

cr2 = cr2(to) a t  t = to. (4.1 c) 

The positivity of the source terms together with the impermeability of the boundary 
ensures that g2 is positive with an overall tendency to increase with time. However, 
when (VX)' drops to zero (after flow reversal) 8 can temporarily reduce if there are 
regions in which 2~ + v . ( K V U ~ )  is negative. 

To obtain an explicit solution for- n2(y, z ,  t )  we make the decompqsition (Smith 

(4.2) 
1982c, equation (4.2)) 

v2 = v2(to)fK+ V - X Z ,  

where K and V respectively are associated with the longitudinal diffusion and with 
the shear: 

(4.3a) 

(4.3 b )  

a, K - V ,  ( K ~ ~ )  = 2K, 

at B - V .  (KVT/) = 2X(ZC-a). 

By analogy with (3.4)-(3.6) we introduce the coefficients 
~ 

~ m ( t )  = K ~ m ,  (4.4) 
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and obtain the solution 
m t 

K(t’)dt’+2 z $,(y,.)j Km(t’)exp(-Amt(t’,t))dt’. (4.5) 
m = i  tLl 

(For high-PQclet-number flows, where shear dominates diffusion, this contribution 
to u2 can be neglected). 

It happens that the constant coefficient P in the eigenfunction expansion for 
V(y, z ,  t )  is precisely the shear-dispersion contribution to the variance for the 
cross-sectionally averaged concentration (Smith 1982a, equation (3.6)), 

__-  - 2(U-a)X = 2D(t,t0) d T  
dt 

m t 

m = i  t0 

= 2 X u,(t)j um(t’)exp ( - A m  T(t’, t ) )d t ’ ,  (4.6) 

where D(t , to)  is the time-dependent shear-dispersion coefficient. It is the time lag 
between the u,(t), um(t‘) terms which give rise to the characteristic negative apparent 
diffusivity following flow reversal (Smith 1982a, figures la-c) .  Likewise, it is this 
decorrelation that leads to  the marked reduction in the long-term averaged shear 
dispersion coefficient for rapidly oscillatory flows (Holley, Harleman & Fischer 1970 ; 
Chatwin 1975). 

For the particular case in which K is independent of time, and the velocity field 
is sinusoidal, we have (Smith 1982a, equation (3.10)): 

1 Am 1 Am + cos 2(wt0 + 0,) - --sin 2(wt + 0,) + --sin 2(wt0 + 0,) 
2 0  2 w  

x [A, sin (wt, + em) - w cos (wt, + o,),}. (4.7) 

The non-homogeneous term in (4.3 b )  leads us to  introduce the further notation 
a, 

Umn(t )  = U$m $n, U@Fn = un + z urn, $m. (4.8a, b )  

Thus the 3, coefficient Vm in the eigenfunction expansion for V satisfies the equation 

m-1 

aT m t dt d Vm + A m ( z )  Vm = 2 2 ( z ~ , , ( t ) - 8 ~ ~ i i ) ~  u,(t’)exp(-h,T(t’,t))dt’. (4.9) 

n = 1  tLl 

If the velocity field is sinusoidal 

and K is independent of time, we have 

w 
cos (ern, -6,)- -sin (6mn -6,)j [I - e ~ p  (-A,(t-t,)] 

m 

Am 
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2[A, sin (wt, + 0,) - cos (wt, + @,)I 
w2 + (A, - h J 2  

- (exp ( - A , ( t - t , ) )  [(A,-A,)sin (wt+O,) 

- 0 cos (wt + Omn)] - exp ( - A,(t - t o ) )  [(A, - A,) sin (wt,  + Om,)  

-6J cos (wt, + Om,)] . 1 (4.11) 

(4.12) 

with v, V, given by the series (4.7), (4.11). 

5. Skewness and spikiness 
The increase in complexity from the solution (3.8) for X to the composite series 

(4.7), (4.1 l ) ,  (4.12) for li deters us from continuing the exact analysis to  higher orders. 
However, the equation for a(3) 

with 
(5.1 a )  

(5.lb) 

permits us to  make some simple qualitative deductions. For example, in a high- 
PBclet-number flow a t  small times after discharge we have the Taylor series 

- U(3)(t0)+&KVU. V{K(vU)z } ( t - to )5  (5.2) 

(Smith 1982c, equation (5.2)). Thus for a symmetric discharge, with the initial 
condition d 3 ) ( t , )  = 0,  the skewness a t  any individual y, z level develops extremely 

At large times after discharge the expression (3.8) for X only involves the first 
harmonics cos wt, sin wt, while the coefficients V, given by (4.11) involve only the even 
terms 1, cos 2wt, sin 2 wt.  Thus the source term in (5.1 a )  becomes oscillatory (with 
frequencies w ,  3 w ) ,  and hence d3) remains bounded. This has the consequence that the 
skewness 3! d3)/v3 eventually decays as ( t - to)-% (Smith 1982u, figure 4 ;  Allen 1982, 
figures 6 b, 7 b) .  

slowly. 

At m = 4 (2.4a, b)  become 

a , U ( * ) - V .  (KVU"))  = (U-ii-i?d,X)a(3)+KVX. V U ( 3 ) + V .  (KU(3)VX)+$K(VV2)2, (5 .3a)  

with Kn . Va(*)  = 0 on dA. (5.3b) 

For high-P8clet-number flows the forcing terms are of order ( t - t 0 ) 6 ,  and hence a(4) 
initially grows as ( t  -to)' .  This confirms the usefulness of the Gaussian approximation 
a t  small times after discharge. However, a t  large times there is a constant component 
in the source terms, as well as the even frequencies 2w, 40. Thus d4) eventually grows 
linearly with time and the spikiness (kurtosis) 4! a(*)/cr4 only decays as ( t - t , ) - l .  

Consideration of higher-order Hermite coefficients reveals this to  be the dominant 
error contribution in the Gaussian truncation. 

Chatwin (1970) shows that for steady flows a(3) and d4) both eventually grow 
linearly with time. Thus for steady flows the dominant error is associated with the 
skewness, and this error decays a t  the extremely slow rate ( t - t , ) - f .  Indeed, the 



142 R. Smith 

magnitude of the skewness is such that Smith ( 1 9 8 2 ~ )  concludes that for steady flows 
the usefulness of the Gaussian approximation is restricted to about one e-folding time 
1 / A l  after discharge. For the oscillatory flow case the spikiness' (kurtosis) initially 
grows more slowly and eventually decays more rapidly than does the steady-flow 
skewness. Hence we can be more optimistic about the accuracy of the Gaussian 
approximation for contaminant dispersion in oscillatory flows. 

6. Vertical shear dispersion in a flow with a parabolic velocity profile 

Their suggested empirical formula is 
Bowden & Fairbairn (1952) give field observations of the velocity profile in the sea. 

u = 1.15U' 0.63+0-37 1 -  - sinwt, (6.1 a )  

where U' is the depth-averaged tidal amplitude and h is the water depth. For 
algebraic convenience we rewrite this formula : 

[ ( 31 

with 

u= U 2554+- 1 - -  sinwt, [ * x 31 
U = 02837U'. 

(6.1 b )  

(6.1 c) 

The bulk-flow term 2-554U does not contribute to the dispersion. Thus we can 
interpret U as being the effective amplitude of an oscillatory plane Poiseuille flow. 

Following Allen (1982), we take the vertical diffusivity K to  be constant (independent 
of both z and t ) .  Thus the eigenfunctions q?, and the velocity coefficients a,, a,, 
can be inferred from the steady-flow results (Smith 1982c, equation (8.2)) : 

( -  l),+l 31/2 
a,  = , 8, = O m ,  = 8,, = 0, 

m2n2 

6(m2 + n2) 
n2(m2 - n2)2 ' 

a,, = ( -  l ) m + n + l  
3 

4m2n2 ' 
a,, = - 

(6.2a, b)  

(6.2 c, d )  

(Strictly, a time-independent K is only appropriate for deep estuaries. Thus the 
results given below are qualitatively but not quantitatively accurate for intermediate- 
depth estuaries.) 

From (3.8) we find that the centroid displacement is given by the formula 
6Uh2 O0 ( - l )mcos(mnz/h)  . sz 

{sin wt - cos wt 
m4+Q2 X=- c. 

T 4 K  

-exp( -$w(t-to))[sinwto- -coswt, m2 I> , (6.3a) 

with (6.3 b )  

The dimensionless frequency i2 indicates whether the oscillations are sufficiently slow 
for the dispersion process to be quasi-steady (Bowden 1965), or so fast that the 
memory of the initial discharge time to persists for several flow oscillations. Figures 
1 (a ,  b,  c) show that the centroid displacements a t  the depths z/h = 0, -;, - 1 for the 
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0.005 [b ) 2n 
I 

Time wr ___) -0.005 

FIGURE 1. Centroid displacements as a function of time a t  depths ( a )  2 = 0,  (b )  z = -@, 
(c )  z = -h in an oscillatory flow with a parabolic velocity profile. 
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intermediate dimensionless frequency R = 1 ,  and with the discharges taking place 
at the phases wt, = 0, fn, in. At the mid-depth (figure 1 b )  the lowest mode does not 
contribute to X. Thus not only are the displacements relativeiy small, but also there 
is a much more rapid approach to the asymptotic sinusoidal solution than is the case ~- 
for the other twodepth;. 

V, take the forms 
If we exclude transient exponential terms, then the solutions (4.7), (4.11 

l m 2  . 
252 

+ ~ ( C O S  2wt + cos 2wt0) - -- (sin 2wt - sin 2wt, 

I 4Rm2 sin2wt 
9 Uh2 (-l),+l 2522 - m4 

cos 2wt - 
V r n = - ( T )  n822/2 4R2 + m4 

I sin 2wt 
2R2 - n2m2 2(m2 + n2) CI 

4R2 + m2 
cos 2wt - x -+  {s 4R2+m4 

This asymptotic expression (6.5) for V, does not involve to .  Thus the persistent 
influence of the discharge time to is uniform across the flow. The greatest overall 
increase in dilution occurs if the contaminant is released a t  the time 

1 00 

tan2wt0 = Z 

(i.e. shifting from wt, = an for small 52 to wt, = 0 for large a). Figure 2 shows the 
evolution of 7, including the transient terms, for the case CI = 1 .  In  keeping with 
the results of Smith (1982a), there is a substantial span of time in whichv decreases. 
This would be even more pronounced if a larger value for R had been chosen. 

The central question towards which the present work is directed is whether the 
contraction might only be an artifact of the cross-sectional averaging process. For 
high-P6clet-number flows this can be investigated by plotting the shear-dispersion 
contribution V - X 2  to the variance a2(z, t). Figures 3 (a, b,  c )  show the results a t  the 
depths xlh = 0, -+, - 1 for the case R = 1 .  It is only a t  the free surface that the 
contraction is entirely removed. At the other two depths (figures 3b ,  c ) ,  the time span 
for contraction is less than in figure 2, but is nevertheless still present. (Away from 
the free surface the shear-dispersion processes is efficient and the concentration is 
relatively low. Thus a t  the turn of the tide there is diffusion downwards and the 
concentration increases.) 

7. Comparison with Allen's random-walk results 
Although the primary concern of the work of Allen (1982) was with the vertically 

averaged concentration, her random-walk method also yields the full two-dimensional 
concentration distribution. She has kindly provided some of her computer output to 
permit a test of the present Gaussian approximation. A more comprehensive 
investigation of the numerical accuracy is being undertaken a t  the University of 
Oxford by Stairmand (personal communication). 
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0.007 r 

Time wt ---+ 2 1  

FIGURE 2. The cross-sectionally averaged variance (or the variance of the cross-sectionally 
averaged concentration) for an oscillatory flow with a parabolic velocity profile. 

Scaled relative to the water depth h and to the friction velocity u*,  the vertical 
jumps are chosen by Allen (1982) to have length and velocity scales 

L’ = 0.1, W’ = 1.0975. (7.1) 

This choice was motivated by the experimental results of Sullivan (1974). Thus the 
effective (long-term) vertical diffusivity is given by 

K = ~L’w’ = 0.055 (7.2) 

(Csanady 1973, equation (2.30)). Also, the dimensionless tidal period and horizontal 
tidal velocity are chosen (as per the Mersey Narrows): 

T = 89.4, U’ = 198 ( U  = 5.6). (7.3) 

We remark that with these parameters (7.2), (7.3) the dimensionless frequency C2 has 

(7.4) 
the small value i2 = 0.13, 

with the consequences that the dispersion process is quasi-steady and the contraction 
of the contaminant cloud will be imperceptible (Allen 1982, figure 8). 

Figures 4 (a ,  b, c) compare the random-walk and Gaussian concentration distribu- 
tions a t  the levels z / h  = -0.05, -055, -0.95 when wt = in, wt, = 0. The fluctuations 
in the random-walk results could have been reduced if either the horizontal resolution 
had been coarser, or more than lo4 particles had been used. Despite the relatively 
rapid vertical mixing, there is a noticeable shift between the concentration distribu- 
tions near the free surface and near the channel bed. This is likewise evident in the 
Gaussian approximation. Indeed, there is reasonable agreement between the two 
approaches. 

Figure 5 gives the corresponding comparison for the vertically averaged con- 
centration F .  The vertical averaging reduces the fluctuations. However, i t  also gives 
rise to skewness ( - 0.16) and kurtosis (-0.50). These features could not be reproduced 
with a diffusion model for F ( z ,  t ) .  However, the two-dimensional Gaussian approxi- 
mation yields suitably non-Gaussian results for F .  
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FIGURE 3. Variances as a function of time a t  the depths ( a )  z = 0, ( b )  z = -Ih 2 '  

( c )  z = - h  in an oscillatory flow with a parabolic velocity profile. 
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FIQURE 4. Comparison between Allen's random-walk results and the Gaussian approximation 
a quarter-cycle after discharge at the levels (a) z = -005h, ( b )  z = -0,55h, ( c )  z = -0.95k. 
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FIQURE 5 .  Comparison between Allen's random-walk results and the Gaussian approximation 
at a quarter-cycle after discharge for the vertically averaged concentration. 

8. A simple model for lateral shear dispersion in a shallow estuary 
The complexity of the results (3.8), (4.7), (4.11),  (4.12) for X and V stems from 

the occurrence of infinite series. Thus a recipe for a simple model would be to truncate 
the series. This arises naturally if the velocity profile u ( y ,  z ,  t )  were to  involve just 
a single mode: 

I n  shallow estuaries (less than 20 m deep), the timescale for vertical mixing is very 
much less than the tidal period. Thus on a tidal timescale we can ignore vertical 
concentration variations, and the vertically integrated eigenmode equation (3.1 a )  
becomes 

with 

(8.2a) 

(8.2b) 

Here h(y )  is the water depth, 1 1 ~ 1 1  the vertically averaged transverse diffusivity, and 
y-, y+ are the two sides of the estuary, 

A reasonable model for the velocity and diffusivity distributions across the estuary 
is 

(8.3a, b )  

(Fischer 1972). For a parabolic depth profile 

the eigenmodes are ultraspherical polynomials 

(8.5a) 

(8.5b) 
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(Abramowitz & Stegun 1965, $22). Conveniently, the velocity profile involves just 
the m = 2 mode (Smith 1982a, $6) :  

( 8 . 6 ~ )  

(8 .6b)  

Such is the extent of the mathematical simplifications that it is not necessary to 
employ the full analysis of 4$3,4. Instead, we can solve the high-Pkclet-number 
version of (3.3a),  ( 4 . 1 ~ )  directly to obtain 

with 
F(t, to)  = f i ( t ’ )  exp ( - A ,  T(t’, t ) )  dt‘, Jt: (8.76) 

t 

(8.8) 
1 

- - [ 1 - 5 (s) ‘1 jto exp ( - A, T( t I ,  t ) ) IIK(t’)ll F ( t ’ , to), A , dt ’ . 
4 < /I 41) 

(In this context the high-P6clet-number approximation is equivalent to the estuary 
width squared greatly exceeding the depth squared.) From the y-dependent term 
in (8.8) we can verify that, as the centroid displacement factor F passes through zero, 
the variance is decreasing a t  the two sides of the flow : 

As an illustrative example, figures 6 and 7 show the evolution of X and 8 for the 
particular case H = 10 m, B = 200 m, w = 1.5 x s-l, 

( ( ~ 1 1  = 0.02h(lull, ii = sinwt (m s-l), (8.10) 

and for the discharges a t  the turn of the tide wt, = 0, and a t  the flood wt, = &r. For 
this moderately wide estuary the oscillatory character and y-dependence of the 
variance is quite marked for several tidal cycles. Also, via the F2 factors, there is a 
strong dependence of the rate of spreading upon the precise time of discharge. 

This dramatic memory effect has been investigated recently by the author (Smith 
19823) in the context of discharges in the deep ocean. If the uniform Contaminant 
release takes place a t  the extreme of the particle displacement wt, = 0, then the 
deformation of the concentration contours (and hence the concentration gradient 
across the flow) is maximized. Thus the shear-dispersion mechanism is at its most 
efficient, with a correspondingly rapid rate of spreading of the contaminant. If instead 
the contaminant release takes place a t  mid-cycle wt, = in, then the deformation of 
the concentration contours is symmetrical and is minimized (in a least-square sense). 
This means that for the first few cycles the shear-dispersion mechanism is at its least 
efficient. Eventually (on a timescale of l / A , )  the memory of the precise discharge time 
fades away, However, there is a persistent y-independent shift in r2 (the excess 
variance). I n  wider estuaries this effect is more pronounced and the timing of a 
discharge is even more critical. 
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0.7 km 

Time mt  
- 1  km 

FIGURE 6. Centroid displacement as a function of time a t  the position 
y = B in a shallow estuary with a parabolic depth profile. 

Time wt * 5n 

FIQURE 7.  Variance at the side (-), centre (--), and a t  y / B  = d$ (---) for discharges 
a t  the turn of the tide and a t  the flood in a shallow estuary with a parabolic depth profile. 
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